بررسی توزیع‌های احتمالی مناسب برای دی‌های حداکثر، میانگین و حداقل با استفاده از روش گشتاور L

(مطالعه موردی: استان مازندران)

عباس غلامی، محمدشهیدی، محمدضا قاندله، بهروز وفاخوا

چکیده

در توزیع‌های احتمالی مورد استفاده در هیدرولوژی، از روش‌های مختلفی برای بی‌كارگیری آنها بهره‌گیری می‌شود که همواره در این روش‌ها مورد استفاده قرار دارد. این تاکید که بهترین روش به‌نظر می‌رسد. به منظور بررسی توزیع‌های احتمالی مناسب برای دی‌های حداکثر، میانگین و حداقل، تست‌هایی از میانگین، میانگین و حداکثر و کنترل خطای سالمان و 20 استقلاً هیدرومتری موجود در منطقه. برای 20 استقلاً هیدرومتری برای دی‌های حداکثر، میانگین و حداقل لازم است. به منظور بررسی این مدل‌ها، مناسب است و نتایج آن برای دی‌های حداکثر، میانگین و حداقل مناسب است. به منظور بررسی این مدل‌ها، مناسب است و نتایج آن برای دی‌های حداکثر، میانگین و حداقل مناسب است.

واژه‌های کلیدی: دی‌های حداکثر، میانگین و حداقل، تابع توزیع فراوانی، میانگین انحرافات نسبی، توزیع‌های L

احتمالی و گشتاور L
توجه‌های آماری این است که آمار محدود موجود درMITون وسعه داده که به این ترتیب نسبت حجمی است و احتمال بسیار کمی از روی استمداد منحنی توزیع نتیجه بدست آورده در ضمن توزیع نتیجه بدست آمده را با دی سارامتر بیان کرد (4). برای برآورد پارامترهای آماری هریک از توزیع‌ها از جمله بین‌گانه، انحراف میانگین، چولگی و کشیدگی، از روش‌های خاصی استفاده می‌شود (مانند درستنمایی ماکزیمم روش گرافیکی، فرمول‌های تجربی و روش گشتاورها). در این مطالعه، برای برآورد پارامترهای آماری از روش گشتاور L یا گشتاور خطی استفاده (Linear moments) شده است. روش گشتاور L که درایای ناب‌توزیع آماری خطی است از جمله روش‌های جدیدی است که برای انتخاب توزیع‌های مناسب آماری برای داده‌های هواشناسی و هیدرولوژیکی به کار می‌رود. پارامترهای آماری که از روش گشتاور L به‌دست می‌آیند، می‌توانند برای محاسبه دبی‌های حداکثر متوسط و حداکثر با دوره‌های پازگشت مقاوت از توزیع‌های آماری مختلف مورد استفاده قرار گیرند و در نهایت با استفاده از آزمون‌های برازنگ نوعی بهترین توزیع برای استفاده با داده‌های مختلف به‌دست می‌آید. در حقیقت، در حدود 98% (با مانند و 55٪) در منطقه جغرافیایی هریک از گزارش‌های احتمالی مورد استفاده قرار داده، و المسیر W3 می‌تواند مدل مقایسه‌ی مدل شایع و GEV را برای چربی‌های حداقل روزانه و 7 روزه در ایالات متحده نشی می‌کند. تحقیق (1965) از روش آماری حداقل مربعات برای برآورد توزیع‌های N برای جریان‌های LP3، GAM، LN3، LN2

1. Wallis
2. Matalas
3. Markovich

مقدمه

هیدرولوژی علمی است که پیوستگی حاصل از ارتباطات آب با روی زمین و همچنین روابط آن با محیط مورد بهبود و بررسی قرار می‌گیرد. هیدرولوژی هندسی جزئی از علم هیدرولوژی است که چنین بررسی‌هایی را در بر می‌گیرد. پردازش داده‌ها و استفاده صحة آن می‌باشد. مطالعات دقیق هیدرولوژیکی، به‌همگان تهیه شده‌های پرورش‌داری از منابع آب، پیش‌بینی طغیان‌ها، محافظت‌سازی از سیلاب‌ها، سد‌سازی، تاسیسات...
مواد و روش‌ها
موقف‌گیری‌های منطقه موردطالعه
بستر رودخانه‌های ساحلی دریای خزر در دامنه‌های شمالی خشک‌ریز نشان‌های کوه‌های البرز قرار دارد و در امتداد ساحل دریا از دلتای سفیدرود تا بهترین توقف‌های آن گسترش یافته است. جوی آبیاری رودخانه‌های ساحلی دریای خزر بین مختصات جغرافیایی ٢٥° و ٢٧° شمالی و ٢٧° و ٣٤° شرقی و ٧° و ٤٤° غربی به ترتیب و فاصله ٤٨٠ تا ٤٧٠ کیلومتر در طول دماوند متغیر است (شکل ١).

روش کار
به‌منظور دستیابی به اهداف این تحقیق، از بین نزدیک به ٦٠ ایستگاه هیدرومتری موجود در پهنه استان، تعداد ٢٤ ایستگاه هیدرومتری برای دبی‌ها و متوسط سالانه و ٢٠٠ ایستگاه منطقه‌ای دیگر نیز انتخاب گردید. این مراحل یا ٥٠ ایستگاه انتخاب‌شده، دبی و متوسط سالانه و ٢٠٠ ایستگاه منطقه‌ای دیگر نیز انتخاب گردیدند.

- Hydrological Frequency Analysis
جدول 1 - مشخصات ایستگاه‌های هیدرومتری انتخاب‌شده جهت بررسی

<table>
<thead>
<tr>
<th>نام رودخانه</th>
<th>رودخانه</th>
<th>ایستگاه</th>
<th>تاریخ</th>
<th>مساحت (Km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>رامسر</td>
<td>صفرود</td>
<td>1244</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>گانگسر</td>
<td>صفرود</td>
<td>1244</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>چالیکود</td>
<td>چالوکود</td>
<td>1327</td>
<td>479</td>
</tr>
<tr>
<td></td>
<td>چشمه گیلا</td>
<td>چشمه گیلا</td>
<td>1327</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>هرات بر</td>
<td>دنیزرا</td>
<td>1325</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>آزادی</td>
<td>دنیزرا</td>
<td>1325</td>
<td>477</td>
</tr>
<tr>
<td></td>
<td>کرکدشت</td>
<td>سرداربود</td>
<td>1324</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>چالوکود</td>
<td>سرداربود</td>
<td>1335</td>
<td>428</td>
</tr>
<tr>
<td></td>
<td>چالوکود</td>
<td>سرداربود</td>
<td>1345</td>
<td>328</td>
</tr>
<tr>
<td></td>
<td>چالوکود</td>
<td>سرداربود</td>
<td>1345</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>چالوکود</td>
<td>سرداربود</td>
<td>1345</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>چالوکود</td>
<td>سرداربود</td>
<td>1345</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>نوره</td>
<td>تالِک</td>
<td>1337</td>
<td>123</td>
</tr>
</tbody>
</table>
| | نوره | تالِ

ضریب فراوانی برای هرکل از ایستگاه‌های منتخب، بدین‌صورت برابر با مجموع مربعات باقیمانده یا استفاده‌شده که می‌باشد: \[R.S.S = \sum_{i=1}^{n} (Q_i - Q_{oi})^2 / n - m \]

در این معادله: \[Q_{oi} \] Residual Sum of Squares
بررسی توزیع‌های احتمالی مناسب برای دی‌های حداکثر... نوشت‌شده شد که این برناهمه در نهایت مجموع مربعات باقی‌مانده برای هر یک از استخراج‌ها را محاسبه می‌کند.

پس از محاسبه S.B رای کلیه دی‌ها و استخراج‌های آنها، نتایج آن رای مقایسه با روش گشتاور مجموعه استخراج شد و با توجه به کمترین مقدار R.S.S توزیع مناسب و روش مناسب به همراه طول دوره آماری آنها شده است. به‌منظور مقایسه بهتر توزیع‌های مختلف به روش گشتاور L و گشتاور مجموعی، مجموع نمرات و همچنین درصد رتبه‌ها اول برای دی‌های مختلف به‌دست آمد.

نتایج

انتخاب توزیع‌های مناسب برای دی‌های حداکثر سالانه

ایستگاه‌های منتخب

جدول ۲ - جمع نمرات داده شده برای هر یک از توابع توزیع احتمال به دو روش گشتاور مجموعی و گشتاور L برای دی‌های حداکثر سالانه

<table>
<thead>
<tr>
<th>G</th>
<th>LP3</th>
<th>P3</th>
<th>LN3</th>
<th>LN2</th>
<th>Tوزیع آماری</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>92</td>
<td>82</td>
<td>29</td>
<td>47</td>
<td>گشتاور مجموعی</td>
</tr>
<tr>
<td>80</td>
<td>142</td>
<td>84</td>
<td>40</td>
<td>92</td>
<td>گشتاور L</td>
</tr>
</tbody>
</table>

جدول ۳ - درصد رتبه‌های اول برای هر یک از توابع توزیع احتمال به دو روش گشتاور مجموعی و گشتاور L برای دی‌های حداکثر سالانه

<table>
<thead>
<tr>
<th>G</th>
<th>LP3</th>
<th>P3</th>
<th>LN3</th>
<th>LN2</th>
<th>Tوزیع آماری</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>گشتاور مجموعی</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>.</td>
<td></td>
<td></td>
<td>گشتاور L</td>
</tr>
</tbody>
</table>

کمترین مجموع مربعات خطا و بیشترین برازش را با داده‌های مذکور دارد. در این مقایسه همچنین مشخص می‌شود که در روش گشتاور L توزیع گمی با 95 درصد بیشترین برازش را دارد و سه توزیع P3 و LN2 اصلاً برازش نشان نمی‌دهد و در روش گشتاور مجموعی، توزیع LN2 و LN3 و گمی کدام با 30 درصد بیشترین درصد را دارا می‌باشد و توزیع اصلی برازش نشان نمی‌دهد.

انتخاب توزیع‌های مناسب برای دی‌های حداکثر لحظه‌ای

سالانه ایستگاه‌های منتخب

انتخاب توزیع مناسب برای دی‌های حداکثر لحظه‌ای سالانه نیز بسیار بیشتر به دی‌های حداکثر سالانه است. بررسی جدول مجموع نمرات دریافت‌شده برای دی‌های حداکثر لحظه‌ای سالانه (جدول ۴) و همچنین درصد رتبه‌های اول (جدول ۵)، نشان می‌دهد که توزیع گمی و روش گشتاور L با دارا بودن نمره 612.
جدول ۳ - جمع نمرات داده شده برای هر یک از توابع توزیع احتمال به دو روش کشتاور معمولی و

<table>
<thead>
<tr>
<th>G</th>
<th>LP3</th>
<th>P3</th>
<th>LN3</th>
<th>LN2</th>
<th>توزیع آماری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۸</td>
<td>۹۵</td>
<td>۶۱</td>
<td>۴۱</td>
<td>۴۵</td>
<td>روش گشتاور معمولی</td>
</tr>
<tr>
<td>۳۱</td>
<td>۷۸</td>
<td>۷۴</td>
<td>۳۹</td>
<td>۸۵</td>
<td>کشتاور L</td>
</tr>
</tbody>
</table>

جدول ۵ - درصد رتبه‌های اول برای هر یک از توابع توزیع احتمال به دو روش کشتاور معمولی و

<table>
<thead>
<tr>
<th>G</th>
<th>LP3</th>
<th>P3</th>
<th>LN3</th>
<th>LN2</th>
<th>توزیع آماری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>روش گشتاور معمولی</td>
</tr>
<tr>
<td>۹۵</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>کشتاور L</td>
</tr>
</tbody>
</table>

انتخاب توزیع‌های مناسب برای دبی متوسط سالانه

ایستگاههای منتخب بررسی مجموع نمرات داده‌شده برای دبی متوسط سالانه (جدول ۶) و همچنین درصد رتبه‌های اول دبی متوسط سالانه (جدول ۷) نشان می‌دهد که توزیع گامبل با روش کشتاور L برای همه ۲۵ استگاه بررسی شده با کمترین مجموع مربعات خطأ (۲۷)

جدول ۶ - جمع نمرات داده شده برای هر یک از توابع توزیع احتمال به دو روش کشتاور معمولی و

<table>
<thead>
<tr>
<th>G</th>
<th>LP3</th>
<th>P3</th>
<th>LN3</th>
<th>LN2</th>
<th>توزیع آماری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷۷</td>
<td>۱۰۰</td>
<td>۶۷</td>
<td>۵۱</td>
<td>۶۷</td>
<td>روش گشتاور معمولی</td>
</tr>
<tr>
<td>۷۷</td>
<td>۹۳</td>
<td>۸۲</td>
<td>۵۰</td>
<td>۱۰۳</td>
<td>کشتاور L</td>
</tr>
</tbody>
</table>

جدول ۷ - درصد رتبه‌های اول برای هر یک از توابع توزیع احتمال به دو روش کشتاور معمولی و

<table>
<thead>
<tr>
<th>G</th>
<th>LP3</th>
<th>P3</th>
<th>LN3</th>
<th>LN2</th>
<th>توزیع آماری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴</td>
<td>۸</td>
<td>۳۶</td>
<td>۵۲</td>
<td>۴</td>
<td>روش گشتاور معمولی</td>
</tr>
<tr>
<td>۹۶</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>کشتاور L</td>
</tr>
</tbody>
</table>

انتخاب توزیع‌های مناسب برای دبی حداقل سالانه

ایستگاههای منتخب با بررسی جداول جمع نمرات و درصد رتبه‌های اول دبی حداقل سالانه (جدول ۸ و ۹) مشخص می‌گردد که در مورد دبی حداقل سالانه، توزیع گامبل با روش
جدول 8- جمع نمرات داده شده برای هر یک از توابع توزیع احتمال به دو روش گشتاور معمولی و LP3

<table>
<thead>
<tr>
<th>G</th>
<th>LP3</th>
<th>P3</th>
<th>LN3</th>
<th>LN2</th>
<th>روش</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>114</td>
<td>59</td>
<td>36</td>
<td>48</td>
<td>لامین</td>
</tr>
<tr>
<td>26</td>
<td>94</td>
<td>48</td>
<td>12</td>
<td>77</td>
<td>لامین</td>
</tr>
</tbody>
</table>

جدول 9- درصد رتبه‌های اول برای هر یک از توابع توزیع احتمال به دو روش گشتاور معمولی و LP3

<table>
<thead>
<tr>
<th>G</th>
<th>LP3</th>
<th>P3</th>
<th>LN3</th>
<th>LN2</th>
<th>روش</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>48</td>
<td>12</td>
<td>24</td>
<td>8</td>
<td>لامین</td>
</tr>
<tr>
<td>96</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>لامین</td>
</tr>
</tbody>
</table>

حاصل از آن دارای کمترین خطای نزدیک‌تر به واقعیت است. انتخاب کد. در مورد دیگر ها حاکم سالانه و حداکثر احتمال سالانه توزیع گیمبل و روش گشتاور لامین با کمترین مجموع مربعات خطای بینی به ترتیب LP3 و P3 به عنوان توزیع مناسب انتخاب شدند. نتایج این تحقیق را می‌توان با نتایج کار محققان دیگر در سایر مناطق جهان مقایسه کرد. از و پایازی (1995) با بررسی 19 منطقه در سطح جهان، توزیع گمبل را به عنوان توزیع جهانی برای جریان‌های سیل انتخاب کردند. گرینگز و آدامفسکی (1992) با نیویرانژویک کانادا و پلیسی و آدامفسکی (1992) با بررسی 25 منطقه در نواکاتانیکا کانادا و همچنین والیس (1988) با مطالعه بر روی 55 منطقه در شرق ایالات متحده آمریکا همگی توزیع گمبل را به عنوان توزیع مناسب انتخاب کردند. در مورد جریان‌های متوسط سالانه، توزیع گمبل با روش LP3 و همچنین روش P3 و روش LP3، در همه استان‌ها توزیع مناسب منطقه‌ای است. این توزیع در وابستگی 96 درصد رتبه‌های اول را کسب کرد. نتایج این تحقیق را می‌توان با نتایج کار مارکوزی (1965) مقایسه کرد که از روش آماری حداکثر معنی‌داری برای برآورد توزیع‌های مختلف در روش گشتاور L توزیع‌های LP3 و P3 به ترتیب با 96 و 97 کمترین برآورد را با داده‌های دستگاه نیاز هم‌آفریدی درصد رتبه‌های اول این سه توزیع نیز کمترین مقدار، بینی صفر درصد است. در مورد روش گشتاور معمولی نیز توزیع LP3 با دارا بودن نمره 59 و پیشرفت درصد رتبه‌های اول (48 درصد) بهترین توزیع است. در این روش، تفاوت درصد رتبه‌های اول کمتر از روش گشتاور لامین می‌باشد. هدف دیگر این تحقیق که همان آثار طول دوره آماری در انتخاب روش و توزیع مناسب است نیز بررسی شد. با توجه به اینکه دوره مشترک آماری 30 سال است و استرس‌های مختلف بررسی شده در حوزه طول دوره آماری حول 30 سال می‌باشد، از اینرو به نظر می‌رسد که طول دوره آماری تاثیر خاصی در انتخاب روش و توزیع مناسب داشته است، ولی در مورد حداکثری و حداکثر لحاظ سالانه، طول دوره آماری کوتاه برای برآورد توزیع گمبل و روش گشتاور L نشان می‌دهد، ولی این تاثیر حتی قطعی نیست (3).

بحث و نتیجه‌گیری

با توجه به اینکه در بین هیپرولوژیست‌ها هیچ‌گونه توافقی در مورد استفاده از یک تابع توزیع خاص وجود ندارد، ولیکن می‌توان توزیع مناسب را که نتایج
منابع

1- افشان، عباس. 1367. مهندسی انتشارات، مرکز نشر دانشگاهی.
2- غلامی، عباس. 1379. دریافت و توزیع پیاده‌نواحی بهینه‌سازی، مطلب‌نواحی و مداکتری با استفاده از روش گشتاور. و (مطالعه موردی در استان مازندران). پایان‌نامه کارشناسی ارشد دانشگاه تهران.
3- مهدوی، محمد. 1378. هیدرولوژی کاربردی، دوجلد، انتشارات دانشگاه تهران.
An Evaluation of Suitable Probability Distributions for Minimum, Mean and Maximum Discharges, Using L Moment Method (Case Study: Mazandaran Province)

A. Gholami\(^1\) M. Mahdavi\(^2\) M. R. Ghannadha\(^3\) M. Vafakhah\(^4\)

Abstract
In probability distributions within hydrology, different methods are used regarding their application. The most prevailing has been central moment and with the use of computers, maximum likelihood method is used, too. The use of L-moment has been adopted now only for a few years in the world and its application is in primary stages in our country. This research was carried out to make clear its use and make a comparison of it with previous common methods. In order to investigate the suitable probability distributions for maximum, mean and minimum annual discharges, with the use of L-moment method, from nearly 70 existing hydrometric stations in the area, about 20 were selected for maximum and peak discharges and 25 hydrometric stations for mean and minimum annual discharge. After selection of suitable stations and evaluation of discharges from selected stations, 30 year statistic cycle was selected from 1968-69 water year until 1997-98 as a common statistic term. Missing data in the selected stations was accounted for by station regression method with the use of Minitab software program. The values for residual sum of squares were calculated by ordinary moment method for 5 used distributions in the study with the use of HYFA software program. A comparison was made with the values of residual sum of squares obtained through L-moment method. With due attention to the lowest residual sum of squares for each distribution, the suitable distribution was chosen for each station by two methods of ordinary and linear moment. According to the results of this research regarding annually maximum and annually peak discharges, for most stations, Gumbel distribution, L-moment method, LN3 distribution, and ordinary moment methods were found fit. Regarding annually average and annually minimum discharge Gumbel distribution and L-moment methods were found to be suitable.

Keywords: Maximum, minimum and mean discharges, Frequency distribution function, Mean relative deviation, L-moment.

\(^1\) - Senior Expert in watershed Management
\(^2\) - Professor, Natural Resources Faculty of Tehran University
\(^3\) - Asst. Prof., Agriculture Natural Resources Faculty of Tehran University
\(^4\) - Faculty Member, Natural Resources Faculty, University of Tarbiat-e-Modarres